What do you mean by an open AI hardware ecosystem?
In hardware design, intellectual properties (IPs) are often closed, posing a challenge for countries like India with abundant talent but limited access to expensive tools. Efforts such as Chip to Startup aim to democratise access, but they reach only a fraction of potential users, considering the vast student base and aspiring researchers. Therefore, the concept of openness entails two crucial aspects. First, openness provides access to free and open source tools, thus expanding accessibility beyond those restricted by costly proprietary software. Second, it pertains to making IPs open, enabling democratised development where individuals from diverse backgrounds can contribute, akin to the Linux open source movement. Embracing openness allows for an open innovation culture in hardware. Openness challenges the traditional closed nature of hardware IPs to create standardised solutions, such as a universally open USB standard, or other such technologies.
How will it affect business opportunities in the electronics hardware ecosystem?
It is only going to increase. So, keeping things open is going to reduce the barrier of entry. Currently, funding and access to tools and specific IPs are major barriers. With an open framework, access to these tools, IPs, and design methodologies becomes much easier, allowing more people to start. While many first-year students can easily use Python libraries to build applications, far fewer can build a chip or have access to the necessary resources.
What about AI tools which can help designers with entire chip designs?
True, but how do you validate it against a problem? If there is an IP owned by another entity and the designer tries to generate it, they will run into legal complications.
This story is from the September 2024 edition of Electronics For You.
Start your 7-day Magzter GOLD free trial to access thousands of curated premium stories, and 9,000+ magazines and newspapers.
Already a subscriber ? Sign In
This story is from the September 2024 edition of Electronics For You.
Start your 7-day Magzter GOLD free trial to access thousands of curated premium stories, and 9,000+ magazines and newspapers.
Already a subscriber? Sign In
WHAT DOES 2025 HOLD In Store For Us?
From Al and blockchain technology to robotics and automation, the tech trends and predictions for 2025 suggest a year of steady progress.
TRULY INNOVATIVE ELECTRONICS -INNOVATION UPDATES
Amongst numerous press releases of new products received by us, these are the ones we found worthy of the title Truly Innovative Electronics
Elastomer enhancing smart wearable performance
A high-tech, flexible wearable device made from the innovative elastomer material
Nanotechnology based noninvasive cancer diagnostics
Nanoflake sensors built from indium oxide with platinum and nickel detect changes in isoprene
Space communication with silent amplifiers
In the new communication system from researchers at Chalmers University of Technology, in Sweden, a weak optical signal (red) from the spacecraft's transmitter can be amplified noisefree when it encounters two so-called pump waves (blue and green) of different frequencies in a receiver on Earth.
Advancements in TOPCon solar cells
The structure and performance of tandem devices with highly passivated TOPCon bottom cells
Quantum leap in magnetism refines superconductors
Rice University physicists have uncovered key magnetic and electronic properties in kagome magnets, structures resembling basket-weaving patterns.
Sensor targets food antioxidants
A research team from Hunan City University and Xiangtan University in China has developed a sensor for detecting TBHQ, a food antioxidant used in oils and fats, addressing health concerns at high concentrations.
Data sensing with repurposed RFID tags
UC San Diego researchers have advanced passive data collection with a breakthrough in battery-free sensing.
Seal-inspired sensors to safeguard offshore wind farms
Schematic structure of the seal whisker-inspired flow sensors