Thin, printed batteries represent a revolutionary advancement in battery technology, characterised by their remarkably slim profiles—often just a millimetre thick. This minimal thickness is achieved through a specialised printing process where all essential components, including electrodes and electrolytes, are deposited onto a flexible substrate. The choice of materials, typically acid-based solutions like zinc-carbon, is critical as these are not only conducive to the printing process but also effective in thin-layer applications.
The flexibility of these batteries is derived primarily from two factors: the thinness of the cells and the pliability of the substrate onto which they are printed. This combination ensures that the batteries can bend and flex without compromising their structural integrity or performance. This makes them ideal for applications where traditional rigid batteries would not be feasible.
On the other hand, bulkier flexible batteries take a different approach by modifying traditional components to enhance flexibility. This often involves adapting the electrolyte, electrode, and packaging materials. For example, using a semi-solid or solid-state electrolyte within a flexible lattice structure helps maintain ion flow while allowing the battery to bend. Packaging innovations, such as pre-crumpling, are crucial for improving durability during flexion, reducing potential damage by prestressing the material.
Electrode and electrolyte innovations
The choice of electrode for a flexible battery is primarily determined by the chemistry utilised. These batteries often use printed electrodes made from materials such as carbon and primary lithiumbased compounds, the latter used for non-rechargeable purposes. The printing process deposits these materials directly onto flexible substrates, enhancing the battery’s overall flexibility due to its thinness.
This story is from the November 2024 edition of Electronics For You.
Start your 7-day Magzter GOLD free trial to access thousands of curated premium stories, and 9,000+ magazines and newspapers.
Already a subscriber ? Sign In
This story is from the November 2024 edition of Electronics For You.
Start your 7-day Magzter GOLD free trial to access thousands of curated premium stories, and 9,000+ magazines and newspapers.
Already a subscriber? Sign In
WHAT DOES 2025 HOLD In Store For Us?
From Al and blockchain technology to robotics and automation, the tech trends and predictions for 2025 suggest a year of steady progress.
TRULY INNOVATIVE ELECTRONICS -INNOVATION UPDATES
Amongst numerous press releases of new products received by us, these are the ones we found worthy of the title Truly Innovative Electronics
Elastomer enhancing smart wearable performance
A high-tech, flexible wearable device made from the innovative elastomer material
Nanotechnology based noninvasive cancer diagnostics
Nanoflake sensors built from indium oxide with platinum and nickel detect changes in isoprene
Space communication with silent amplifiers
In the new communication system from researchers at Chalmers University of Technology, in Sweden, a weak optical signal (red) from the spacecraft's transmitter can be amplified noisefree when it encounters two so-called pump waves (blue and green) of different frequencies in a receiver on Earth.
Advancements in TOPCon solar cells
The structure and performance of tandem devices with highly passivated TOPCon bottom cells
Quantum leap in magnetism refines superconductors
Rice University physicists have uncovered key magnetic and electronic properties in kagome magnets, structures resembling basket-weaving patterns.
Sensor targets food antioxidants
A research team from Hunan City University and Xiangtan University in China has developed a sensor for detecting TBHQ, a food antioxidant used in oils and fats, addressing health concerns at high concentrations.
Data sensing with repurposed RFID tags
UC San Diego researchers have advanced passive data collection with a breakthrough in battery-free sensing.
Seal-inspired sensors to safeguard offshore wind farms
Schematic structure of the seal whisker-inspired flow sensors